Reinforcement Learning for RARS

نویسندگان

  • Marco Barreno
  • Darren Liccardo
چکیده

This paper presents the results of reinforcement learning experiments for the Robot Auto Racing Simulator (RARS). We compare three different drivers, each taking a different approach to function approximation and reinforcement learning in this continuous-action problem. We report moderate success learning optimal paths around an oval track with simple learners, and we discuss difficulties encountered by more complex learners.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Race: Experiments with a Simulated Race Car

Experiments with a Simulated Race Car Larry D. Pyeatt Adele E. Howe Colorado State University Fort Collins, CO 80523 email: fpyeatt,[email protected] URL: http://www.cs.colostate.edu/~fpyeatt,howeg Abstract We have implemented a reinforcement learning architecture as the reactive component of a two layer control system for a simulated race car. We have found that separating the layers has ...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

Low-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach

This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003